12,148 research outputs found

    A Numerical Study of Spectral Flows of Hermitian Wilson-Dirac Operator and the Index Theorem in Abelian Gauge Theories on Finite Lattices

    Get PDF
    We investigate the index of the Neuberger's Dirac operator in abelian gauge theories on finite lattices by numerically analyzing the spectrum of the hermitian Wilson-Dirac operator for a continuous family of gauge fields connecting different topological sectors. By clarifying the characteristic structure of the spectrum leading to the index theorem we show that the index coincides to the topological charge for a wide class of gauge field configurations. We also argue that the index can be found exactly for some special but nontrivial configurations in two dimensions by directly analyzing the spectrum.Comment: 13 pages, 3 figures, minor modifications including typos, a reference adde

    Fermi surfaces and anomalous transport in quasicrystals

    Full text link
    Fermi surfaces of several quasicrystalline approximants are calculated by means of ab-initio methods which enable direct comparison with dHvA experiments. A criterion for anomalous metallic transport is proposed and power-law temperature dependence of electronic conductivity is deduced from scaling analysis of the Kubo formula.Comment: 8 pages, 7 figures. to appear in Phys. Rev.

    Spectrum of the Hermitian Wilson-Dirac Operator for a Uniform Magnetic Field in Two Dimensions

    Full text link
    It is shown that the eigenvalue problem for the hermitian Wilson-Dirac operator of for a uniform magnetic field in two dimensions can be reduced to one-dimensional problem described by a relativistic analog of the Harper equation. An explicit formula for the secular equations is given in term of a set of polynomials. The spectrum exhibits a fractal structure in the infinite volume limit. An exact result concerning the index theorem for the overlap Dirac operator is obtained.Comment: 8 pages, latex, 3 eps figures, minor correction

    Single-Particle Spin-Orbit Strengths of the Nucleon and Hyperons by SU6 Quark-Model

    Full text link
    The quark-model hyperon-nucleon interaction suggests an important antisymmetric spin-orbit component. It is generated from a color analogue of the Fermi-Breit interaction dominating in the one-gluon exchange process between quarks. We discuss the strength S_B of the single-particle spin-orbit potential, following the Scheerbaum's prescription. Using the SU6 quark-model baryon-baryon interaction which was recently developed by the Kyoto-Niigata group, we calculate NN, Lambda N and Sigma N G-matrices in symmetric nuclear matter and apply them to estimate the strength S_B. The ratio of S_B to the nucleon strength S_N =~ -40 MeV*fm^5 is (S_Lambda)/(S_N) =~ 1/5 and (S_Sigma)/(S_N) =~ 1/2 in the Born approximation. The G-matrix calculation of the model FSS modifies S_Lambda to (S_Lambda)/(S_N) =~ 1/12. For S_N and S_Sigma, the effect of the short-range correlation is comparatively weak against meson-exchange potentials with a short-range repulsive core. The significant reduction of the Lambda single-particle potential arises from the combined effect of the antisymmetric LS force, the flavor-symmetry breaking originating from the strange to up-down quark-mass difference, as well as the effect of the short-range correlation. The density dependence of S_B is also examined.Comment: 26 page

    Topological Charge of Lattice Abelian Gauge Theory

    Get PDF
    Configuration space of abelian gauge theory on a periodic lattice becomes topologically disconnected by excising exceptional gauge field configurations. It is possible to define a U(1) bundle from the nonexceptional link variables by a smooth interpolation of the transition functions. The lattice analogue of Chern character obtained by a cohomological technique based on the noncommutative differential calculus is shown to give a topological charge related to the topological winding number of the U(1) bundle.Comment: 20 pages, latex, nofigur
    corecore